Copied to
clipboard

G = C4229D4order 128 = 27

23rd semidirect product of C42 and D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4229D4, C23.531C24, C24.370C23, C22.3082+ (1+4), C425C424C2, C232D426C2, C23⋊Q829C2, C23.65(C4○D4), C23.23D470C2, C23.11D460C2, (C22×C4).141C23, (C2×C42).608C22, (C23×C4).137C22, C22.356(C22×D4), (C22×D4).541C22, (C22×Q8).156C22, C2.40(C22.29C24), C2.82(C22.19C24), C2.40(C22.32C24), C2.C42.256C22, (C2×C4×D4)⋊53C2, (C2×C4).390(C2×D4), (C2×C4.4D4)⋊21C2, (C2×C4⋊C4).892C22, C22.403(C2×C4○D4), (C2×C22⋊C4).220C22, SmallGroup(128,1363)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C4229D4
C1C2C22C23C22×C4C2×C22⋊C4C23.23D4 — C4229D4
C1C23 — C4229D4
C1C23 — C4229D4
C1C23 — C4229D4

Subgroups: 724 in 314 conjugacy classes, 96 normal (18 characteristic)
C1, C2 [×3], C2 [×4], C2 [×6], C4 [×14], C22, C22 [×6], C22 [×34], C2×C4 [×6], C2×C4 [×38], D4 [×28], Q8 [×4], C23, C23 [×4], C23 [×26], C42 [×4], C22⋊C4 [×20], C4⋊C4 [×2], C22×C4 [×3], C22×C4 [×8], C22×C4 [×8], C2×D4 [×26], C2×Q8 [×4], C24 [×4], C2.C42 [×10], C2×C42, C2×C22⋊C4 [×14], C2×C4⋊C4, C4×D4 [×4], C4.4D4 [×4], C23×C4 [×2], C22×D4 [×2], C22×D4 [×4], C22×Q8, C425C4, C23.23D4 [×4], C232D4 [×4], C23⋊Q8 [×2], C23.11D4 [×2], C2×C4×D4, C2×C4.4D4, C4229D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×4], C24, C22×D4, C2×C4○D4 [×2], 2+ (1+4) [×4], C22.19C24, C22.29C24 [×2], C22.32C24 [×4], C4229D4

Generators and relations
 G = < a,b,c,d | a4=b4=c4=d2=1, ab=ba, cac-1=a-1b2, dad=a-1, cbc-1=a2b, bd=db, dcd=c-1 >

Smallest permutation representation
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 13 26 47)(2 14 27 48)(3 15 28 45)(4 16 25 46)(5 50 40 20)(6 51 37 17)(7 52 38 18)(8 49 39 19)(9 57 43 30)(10 58 44 31)(11 59 41 32)(12 60 42 29)(21 33 55 61)(22 34 56 62)(23 35 53 63)(24 36 54 64)
(1 51 43 61)(2 20 44 36)(3 49 41 63)(4 18 42 34)(5 29 54 16)(6 59 55 45)(7 31 56 14)(8 57 53 47)(9 33 26 17)(10 64 27 50)(11 35 28 19)(12 62 25 52)(13 39 30 23)(15 37 32 21)(22 48 38 58)(24 46 40 60)
(1 61)(2 64)(3 63)(4 62)(5 58)(6 57)(7 60)(8 59)(9 17)(10 20)(11 19)(12 18)(13 21)(14 24)(15 23)(16 22)(25 34)(26 33)(27 36)(28 35)(29 38)(30 37)(31 40)(32 39)(41 49)(42 52)(43 51)(44 50)(45 53)(46 56)(47 55)(48 54)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,13,26,47)(2,14,27,48)(3,15,28,45)(4,16,25,46)(5,50,40,20)(6,51,37,17)(7,52,38,18)(8,49,39,19)(9,57,43,30)(10,58,44,31)(11,59,41,32)(12,60,42,29)(21,33,55,61)(22,34,56,62)(23,35,53,63)(24,36,54,64), (1,51,43,61)(2,20,44,36)(3,49,41,63)(4,18,42,34)(5,29,54,16)(6,59,55,45)(7,31,56,14)(8,57,53,47)(9,33,26,17)(10,64,27,50)(11,35,28,19)(12,62,25,52)(13,39,30,23)(15,37,32,21)(22,48,38,58)(24,46,40,60), (1,61)(2,64)(3,63)(4,62)(5,58)(6,57)(7,60)(8,59)(9,17)(10,20)(11,19)(12,18)(13,21)(14,24)(15,23)(16,22)(25,34)(26,33)(27,36)(28,35)(29,38)(30,37)(31,40)(32,39)(41,49)(42,52)(43,51)(44,50)(45,53)(46,56)(47,55)(48,54)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,13,26,47)(2,14,27,48)(3,15,28,45)(4,16,25,46)(5,50,40,20)(6,51,37,17)(7,52,38,18)(8,49,39,19)(9,57,43,30)(10,58,44,31)(11,59,41,32)(12,60,42,29)(21,33,55,61)(22,34,56,62)(23,35,53,63)(24,36,54,64), (1,51,43,61)(2,20,44,36)(3,49,41,63)(4,18,42,34)(5,29,54,16)(6,59,55,45)(7,31,56,14)(8,57,53,47)(9,33,26,17)(10,64,27,50)(11,35,28,19)(12,62,25,52)(13,39,30,23)(15,37,32,21)(22,48,38,58)(24,46,40,60), (1,61)(2,64)(3,63)(4,62)(5,58)(6,57)(7,60)(8,59)(9,17)(10,20)(11,19)(12,18)(13,21)(14,24)(15,23)(16,22)(25,34)(26,33)(27,36)(28,35)(29,38)(30,37)(31,40)(32,39)(41,49)(42,52)(43,51)(44,50)(45,53)(46,56)(47,55)(48,54) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,13,26,47),(2,14,27,48),(3,15,28,45),(4,16,25,46),(5,50,40,20),(6,51,37,17),(7,52,38,18),(8,49,39,19),(9,57,43,30),(10,58,44,31),(11,59,41,32),(12,60,42,29),(21,33,55,61),(22,34,56,62),(23,35,53,63),(24,36,54,64)], [(1,51,43,61),(2,20,44,36),(3,49,41,63),(4,18,42,34),(5,29,54,16),(6,59,55,45),(7,31,56,14),(8,57,53,47),(9,33,26,17),(10,64,27,50),(11,35,28,19),(12,62,25,52),(13,39,30,23),(15,37,32,21),(22,48,38,58),(24,46,40,60)], [(1,61),(2,64),(3,63),(4,62),(5,58),(6,57),(7,60),(8,59),(9,17),(10,20),(11,19),(12,18),(13,21),(14,24),(15,23),(16,22),(25,34),(26,33),(27,36),(28,35),(29,38),(30,37),(31,40),(32,39),(41,49),(42,52),(43,51),(44,50),(45,53),(46,56),(47,55),(48,54)])

Matrix representation G ⊆ GL8(𝔽5)

01000000
10000000
00120000
00040000
00000010
00000001
00004000
00000400
,
20000000
02000000
00300000
00030000
00001200
00000400
00000012
00000004
,
01000000
40000000
00400000
00110000
00000010
00000044
00001000
00004400
,
01000000
10000000
00400000
00040000
00000010
00000001
00001000
00000100

G:=sub<GL(8,GF(5))| [0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,4],[0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,4,0,0,0,0,1,4,0,0,0,0,0,0,0,4,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

32 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C4D4E···4L4M···4R
order12···222222244444···44···4
size11···144448822224···48···8

32 irreducible representations

dim11111111224
type++++++++++
imageC1C2C2C2C2C2C2C2D4C4○D42+ (1+4)
kernelC4229D4C425C4C23.23D4C232D4C23⋊Q8C23.11D4C2×C4×D4C2×C4.4D4C42C23C22
# reps11442211484

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{29}D_4
% in TeX

G:=Group("C4^2:29D4");
// GroupNames label

G:=SmallGroup(128,1363);
// by ID

G=gap.SmallGroup(128,1363);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,758,723,185,136]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=d^2=1,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d=a^-1,c*b*c^-1=a^2*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽